Showing A Computer How To Sketch
 
 
	
		A sketch is a compilation of shape and motion from the perspective of the
		artist creating it.  Typically a sketch will be made up of lines representing
		the edges of objects and the boundaries between shapes. It contains most of
		the details important in percieving the vision of the concept itself.  
		How, then, can a computer generate a sketch which mimics that of a human
		creation?
		
		The short answer is: it can't.  A computer has no awareness of human
		perception, nor does it have any sort of conceptual vision in which to apply
		to this perception.  A computer does, however, have tremendous analytical power.
		It can simulate the concepts a human uses to create a sketch by analyzing
		the edges and directions present in an image, in much the same way our own brains do --
		at the most basic level.
		
		Our visual system is highly complex, comprised of billions of neurons with trillions of
		connections.  Each one of these neurons is wired up and 'trained' to respond to a certain
		stimulus and only a certain stimulus.  Many neurons in the lower levels of the visual cortex
		are wired to respond only to edges of a certain orientation, in a certain location.  These
		neurons literally do edge detection, and furthermore, are used to tell which direction that
		edge is oriented.  This is what gives us our primary perception of shapes and boundaries.
		
		Naturally, this seems like a logical place to start training a computer to see like a
		human, and in fact, it is the only place I'm focusing on for the duration of this article.
		In order to simulate the ability for humans to detect edges and directions in such a way, I
		will be using an analysis technique called Digital Signal Processing, or DSP.  In DSP, a
		specific set of values, called the coefficients, are applied to all parts of an image.
		Certain features of the image, in certain places, will have a 'reaction' with these values.
		This process is known as convolution, and is widely used in computer graphics as a method
		to do all sorts of image processing techniques.  Some of the more common types of
		convolution include blurring, sharpening, and embossing.
		
		When doing convolution with an image, the coefficients are usually referred to as a matrix, since
		the values are oriented in 2D.  The values in the matrix are the most important part of determining
		what the convolution will produce.  In a sharpening matrix, the center value is usually very high, while
		the surrounding values are slightly below 0 (-1 or -2).  This causes the differences between pixels to be
		amplified.  In a blurring matrix, the center value is low, with the surrounding values tapering off to zero.
		The size and rate the values fall off from the center defines the width and 'shape' of the blur.
		
		The type of convolution matrix I'm using is referred to as a Gabor filter, and is primarily used to do feature
		detection by responding only to features of a certain size, and of a certain orientation.  The values in a Gabor
		matrix are made of a sine wave multiplied by a gaussian function, also known as a bell curve.
		
		
 
   
		 
   
		
Directionality
		The first steps the program takes in finding the directionality of an image is to convolve the image with
		the Gabor filter in 16 different orientations between 0 and 180 degrees.  This produces 16 separate
		images, one for each orientation of the filter.  The pixels in each of these 16 images are grayscale values
		representing the amount of response each area got from the filter.  Areas which have a strong response
		will be bright, indicating a strong presense of an edge with an orientation very close to the filter's.
		
		Below are four of these images, for only four orientations of the gabor filter -- 0, 45, 90, and 135 degrees:
		
		
		
		Now, for every pixel in the original image, there are sixteen filtered pixels, each one representing the
		directionality of the original pixel's area.  By selecting one of the sixteen filtered pixels which is
		brightest, you can find which direction that pixel, or area, in the original image is oriented.  If it is
		a particularly strong orientation (very bright pixel), a brush stroke can be made over that pixel. The length
		of the stroke may be tied to the strength of the orientation, it may be fixed, or it may be a combination of
		both.
		
		The result, when using the source image's color for the stroke colors, resembles a quick colored pencil sketch:
		
		
	
Variations
 
		An oil pastel effect can be created simply by shrinking the filter size, in order to catch
		smaller details, and using a 50% gray background, so dark and light strokes both show up 
		equally.
 
		
 
		
 
		


Gallery





